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Discretized Boltzmann Equation: Lattice Limit and 
Non-Maxwellian Gases 
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We continue the study of a discrete model of the Bo]tzmann equation, in 
which the spatial variable is replaced by a finite periodic lattice. Using a 
weak compactness criterion for L1, the existence of a lattice limit as the 
lattice spacing tends to zero is proved. The case of unbounded collision 
kernels (non-Maxwellian gases) is also treated. 
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1. I N T R O D U C T I O N  

In a recent paper, ~1~ an existence and uniqueness theorem was proved for a 
special model of  the Boltzmann equation. The major attribute of  the model 
was a lattice representation of the Boltzmann equation, i.e., the spatial 
variable was replaced by a discrete set of  points and the spatial gradient by 
a suitable difference formula. In addition, the collision kernel was taken to 
be that for a "cu to f f "  Maxwell gas. ~2~ (Spohn ~3~ has also treated the same 
problem in a slightly different way.) 

The purpose of this paper is to prove the existence of a weak limit to 
the solutions of  the latticized equations as the lattice spacing tends to zero 
and to relax the Maxwell gas collision assumption. Some of  the results have 
been announced previously~;  here we present the proofs. 

The basic idea is to restrict the initial data to finite energy and entropy. 
We are then able to show (Section 2) that the lattice approximation conserves 
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energy and satisfies an H theorem with the (increasing) entropy and the energy 
uniformly bounded with respect to the lattice spacing. This, in turn, enables 
us to apply a weak compactness criterion and demonstrate the existence of 
a weak limit (Section 3), employing techniques similar to those used by 
Morgenstern <a) and ArkerydY ) The extension to more general collision 
models than the Maxwell gas follows from similar arguments (Section 4). 
We point out that it is not known under what conditions (if any) on the 
collision operator the weak limit is a solution, in some sense, of the original 
Boltzmann equation. 

2. PROPERTIES OF THE M O D E L  

We repeat some of the notation introduced in Refs. 1 and 4, for the 
reade,.r's convenience. The Boltzmann equation is treated in the real Banach 
space 

B ~ = L I ( P ,  x E a) 

with norm 

IlfltB = = 2 -a" ~ f ]f,(c)l dc 
iepn j~a 

Here, P,  = {1.2-",  2-2 ",..., 2"-2-"} a is a discrete set with cardinality 2 a", 
representing a lattice approximation to the continuum P = [0, 1] a, with 
lattice spacing 2-".  We shall also utilize the subspace B~" c B" defined as 

B~" = { f e  B"](1 + c2)~12fc B"} 

with norm 

Ilflt~ = ll(1 + c~)~'YIIBo 

The variable c represents the velocity, while the subscript i refers to the ith 
lattice point. We visualize the lattice I7, as a three-dimensional cubical array, 
with periodic conditions imposed on the boundaries, in accord with the 
finite-difference approximation to the gradient implicit in the definition of 
A" given below. 

The gradient term of the Boltzmann equation is, in the spirit of  the 
lattice approximation, replaced by a finite-difference approximation A". 
Thus 

~c.(f~j,~,o-f(j-2- '%,,)) ,  cx > 0 
2-"(A2f)d,~,o = t.cx(fj+2-",k,,) -- fu,~,O), cx < 0 

and with similar expressions for Au ~ and Az", and A" is obtained from Ax" , 
Au ~, and A~" by tensor products. (~ 
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The differential form of the Boltzmann equation is written 

~f/~t + (A~f)i = J ( f , f ) ,  f ~ B ~ (1) 

where the nonlinear collision term J is a bilinear form: B" x B"---> B", 
which is bounded in the case of cutoff Maxwell molecules. We can write J 
as a difference 

J(% q~) = G(% q~) - D(q~)q~ (2) 

where G: LI([~ 3) x LI([~ 3) -+ LI(R 3) and D: LI(R 8) -+L~o(~3). For the 
proofs presented in Section 4 we shall need even more specific assumptions 
concerning the form of J. In particular, G and D are representable in stan- 
dard form (and Grad's notation) ~2~ as integration over a collision kernel: 

Here, the two assumptions of cutoff Maxwell molecule force law and 
angular cutoff combine to assure that k(O, q) >1 0 is bounded/2~ The proofs 
of this and the following section are actually valid for any bounded kernel, 
of  which the cutoff Maxwell gas model is an example. In any case, the 
boundedness restriction will be removed in Section 4. 

The collision operator J has the property of conserving mass and 
energy/2> In particular, let (1 + c2)cp ~ LI(Na). Then from the assumed form 
of the (bounded) collision operator, one obtains 

f J(% q~) dc = 0 (4a) 
3 

f c2J(% q~) dc = 0 (4b) 
3 

and for positive q~ (subject additionally to some technical restrictions). ~v) 

f J(%q~)ln dc<<.O (5) 
3 

(This inequality implies an H theorem for the Boltzmann equation.) 
In Refs. 1 and 3, it is shown that in order to obtain solutions of Eq. (1), 

it is equivalent to consider the integral version of Eq. (1): 

J; f ( t )  = U"(t)To + U"(t - s)J(f(s), f(s)) ds (6) 
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where ~o ~ B" represents the initial datum and U"(t) is the semigroup 
generated by A ~. The first two lemmas state properties of the semigroup U ". 
Lemma 1 was proved in Ref. 1. 

Lemma 1. (a) g"(t)B+" c B+". 
(b) U"(t) is a (strongly continuous) contraction semigroup and con- 

tinues analytically to a bounded holomorphic semigroup. 
(c) ~ v ,  (U"(t)f)~ = ~ r , f ~  for a l l f ~  B". 

Lemma l(c) implies immediately particle and energy conservation for 
the collision-free Boltzmann equation. Indeed, for any K /> 0 and 9o ~ B~ ", 

~ f  (1 + c2)~/2(U"(t)~o)~(c)dc = ~ f (I + c~)~'2gOo,(e)dc (7) 
i~I<n d ~ 3  iepn d R3 

Lemma 2. U"(t) is a contraction semigroup on B~ ". 

ProoL From Lemma (la) and Eq. (7), we observe 

I]U"(t)f[l~ <<. II/ll~ 

so U~(t) is contractive on B~ ~. For strong continuity, we note that the set 

/~  = {f~ B~lfhas compact support} 

is dense in B~ ~ for all K, and U~(t) is strongly continuous o n / ~  by Lemma l(b). 
Thus U~(t) is strongly continuous on B~ ~, proving the lemma. 

We now show particle and energy conservation for the full Boltzmann 
equation (i.e., with collisions). 

L e m m a  3. (a) Let ~o ~ B+ ~ and let f( t)  be the solution of Eq. (6) 
with f(0) = ~o0. Thenf ( t )  E B+" and 

II/(t)llB.--II~oollB. 

(b) Let ~Oo e B~. + and f ( t )  as above. Then 

II/(t)[[~ = ll~ooll~ 

Proof. Part (a) is proved in Ref. 1 under the assumption ~0o ~ B+ ~ n 
D(A). [The restriction to D(A) is removed in Ref. 7.] The idea is to integrate 
Eq. (6) over c and use Eq. (4a). 

(b) We mimic the proofs of Ref. 1 for the space B2 ~ to conclude that for 
q~0 e B~. + there exists a (unique) solution f( t)  ~ B'~. +. Then multiplication 
of Eq. (6) by c 2 and integration, noting Eq. (4b), yields the desired result. 

We now consider entropy production, first for the collisionless equation. 
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Lemma 4. Let % ~ B+ ", q~o In % ~ B ~, and define 

H(~o) = ~r, fR3 dc ~o~(c) ln ~o,(c) 

Then H(U~(t)%) is a nonincreasing function of t. 

Proof. The proof  of  Theorem 1 in Ref. 1 shows that U'(t, c)~j >i O, 
where U~ indicates the matrix elements 

(Un(t)f)i(c) = ~ U"(t, e)ijfj(c) 
j E P n  

Since 

U~(t, c)~j : 1 
f, CiPn 

by Lemma l(c), then considering the lattice points as state space and fixing 
the velocity c, we see that the matrix U'(t, c) is the transition matrix for a 
discrete Markov system. Since any space-independent distribution ~b(t) ~ B" 
is a fixed point of  U"(t, c), standard arguments <9> prove that H(U"(t)%) is 
nonincreasing. In particular, writing a(x) = x In x, and utilizing the convexity 
of  a, we obtain 

~ffv~f~ dc a((U"(t)~o),) <~ ~ f~ dc U"(t, c),ja(%,) 
i 3 s 3 

l . e m m a  5. Let % e B~,+ such that % In ~o ~ B ~. L e t f ( t )  be a solution 
of Eq. (6) with f (0)  = ~0 0. Then f ( t ) l n f ( t )~  B ~, t i> 0, and H(f(t)) is a 
nonincreasing function of t. 

The proof  of  this lemma follows from a theorem proved in Ref. 8 (we 
reduce the more general statement of  Ref. 8 to the case needed here): 

Let the strongly continuous semigroup (U(t), t >/ 0) on B ~ satisfy the 
following properties: 

(U1) U(t)q~ >1 0 for all q ~ B +  ~, t >/ 0, ]]u(t)n ~< 1, t /> 0. 
(U2) The restriction of (U(t) ;  t >/0) to B2 ~ is a strongly continuous 

semigroup of contractions on B2 ". 
(U3) There are Moo, moo such that UU(t)q~It~o ~< m~em~t[l~on~ , t /> 0, 

for all bounded 9 ~ B+ ". 
(U4) There are Mo, mo such that, for g(e) = e x p ( - 1  - c2), U(t)g >1 

M0(exp mot )g. 
(U5) I f  9 ~ B~, + is such that ~o In 9 ~ B ~, then U(t)~o In U(t)q~ ~ B" for 

all t 1> 0, and H(U(t)cp) is a nonincreasing function of t. 
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Let furthermore J be as defined by Eqs. (2) and (3). Then the conclusion 
of Lemma 5 is true. 

Proof of Lemma 5 
Properties (Ul),  (U2), and (U5) are true by Lemmas 1, 2, and 4, respec- 

tively. Properties (U3) and (U4) follow immediately from Lemma l(c), with 
M| = 2 a~, m~ = 0, Mo = 1, mo = 0. The conditions imposed on J in the 
general theorem of Ref. 8 can be seen to hold automatically for J defined 
in Eqs. (2) and (3). 

3. W E A K  C O M P A C T N E S S  A N D  LATTICE L I M I T  

We define the Banach spaces B = LI(P  x R 3) and 

Br = L I ( [ 0 ,  T] x F x R 3) 

where P = [0, t] a. The spaces B~ and BT,~ are then defined in the obvious 
way (see Section 2). We next introduce the projection pn: B --~ B ~ by 

(P"(f)),(c) = 2 a~ f f(x, c) dx (8a) 
" A t  

where A~ is a cubical plaquette of side 2 - "  associated with the ith lattice 
point. We also define the injections I~: B ~ --+ B 

(lnf)(x, c) = fi(c), x e A~ (8b) 

When needed for clarity, we may use a superscript n to designate an element 
of  B"; thus f "  e B ". 

We now obtain uniform bounds on the entropy and energy (with respect 
to n). 

kemma 6. Let q~o ~ B2,+ such that ~o o In ~Oo e B. Le t f " ( t )  be the solu- 
tion of Eq. (6) with f"(0)  = P"~o. Then H(f"(t)) <<. H(cpo) and 

ProoL By virtue of the previous lemma, it is sufficient to verify the 
estimate 

2-3  < f dx f de4 o) (9) 

with c~(x)- - -xlnx.  Since 2a~f~dx = 1, Jensen's inequality (~~ and the 
convexity of ~ give 

f ~o(X, c) dx) <<. 23'~ f ,~(~o(X, c)) dx 
\ ,s A i  "JA~ 
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Thus the left hand side of (9) is bounded by 

The equality for Nf=(t)llB~ is immediate. 

We are now prepared to state the main result of this section. 

Theorem 1. Let i f ( t )  be the solution of Eq. (1) with f"(0)  = P'q~o, 
~Oo e B2. + and Wo In % c B. Then the sequence {I~f n} contains a subsequence 
{Dff~, -} which converges weakly in BT for every T > 0. 

The theorem is proved by the bounds in Lemma 6 and the following 
criterion for compactness in L,  (see Ref. 6). A sequence {f"} of nonnegative 
functions satisfying the uniform bounds 

dt dc dx (1 + c2)f~(t, x, c) <<. K 
3 

fo of  dt dc dx f~(t, x, c) lnf~(t, x, c) <~ K 
3 

is weakly compact. 
We note that, as a consequence of weak convergence, the weak limit f 

of the subsequence {ln~f~j} has the property of  conservation of mass in the 

following sense: for any X ~ Loo(0, T) with fT o X(t) dt = 1, we have 

ll 011 = f f ( t ,  x, c) dc dx x(t) dt 
J 

4. B O L T Z M A N N  E Q U A T I O N  FOR THE N O N - M A X W E L L  GAS 

In his treatment of the spatially homogeneous Bottzmann equation, 
Arkeryd<6) has used compactness arguments to prove the existence of solu- 
tions for generalized collision models, i.e., non-Maxwell molecules. We follow 
Arkeryd's method here to derive similar results for the lattice model. 

Assume the collision kernel, as defined in Eqs. (3), obeys the condition 

0 <~ k(O,q) <~ M(I + qa) (10) 

for some 0 ~< A < 2 and M > 0. We define a sequence {kp} of bounded 
kernels by 

kp(O, q) = inf{k(0, q), p} 

and write Jp for the collision operator J with kernel kp. [We observe that 
for every finite integer p, kp obeys the conditions stated on J, which guarantee 
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the existence of a global solution to the Boltzmann equation on the lattice 
as proved in Ref. 1.] We now state the following result: 

T h e o r e m  2. Let ~vo ~ B ~ ~, +, q~o In ~o 0 ~ B ~, and fp the solution of Eq. 
(6), with collision kernel kp, satisfying f~(0) = ~Oo. Then (f~(t)}~=l contains 
a subsequence which converges weakly in B2,  ~: < 2. The limit f ( t )  is con- 
tinuous, satisfies the bounds Ilf(t)N = ll~ol[, IIf(t)ll~ < II~o0112, and obeys 
Eq. (6) with (unbounded) collision kernel k(O, q). 

,Drool The compactness criterion stated at the end of the previous 
section, along with the estimates H(f~(t))  <<. H(fp(0)) = H(~0o) (Lemma 5) 
and Hf~(t)n2 = IIL(0)II= = [I~ol[= (Lemma 3), proves the existence of a sub- 
sequence converging weakly in B ~ to a function f ( t )  for a denumerable 
dense set of  t. Extension to all t will follow from the equicontinuity of  the 
family {fp}~=l. Also, we note that weak convergence in B" together with 
boundedness in B2 ~ implies weak convergence in B~" for K < 2. To prove 
equicontinuity we use the fact that fp is also a solution of Eq. (1). (1,7) Then 

[lYe'(t)[] < IJA~f~(t)ll + IlJp(f,(t),f~(t))ll 

Both terms on the right side have bounds independent ofp .  For, 

]IJ~(f~,fp)ll <~ K(IILII~) ~ = / ( l l~%l l~)  ~ 

where K depends only on the bound M in (10). Further, since 

]lA"~0ll < 6]](IcI~0)ll < 61]~0ll~ 

we have 

[lA"f~(t)ll < 6lI~ool]~ 

Thus [lL(t)]l is uniformly bounded in p. Equicontinuity of  the sequence 
(fp}~= ~ follows. 

Conservation of mass, IIf(t)ll = II~oo/], follows immediately from weak 
convergence. The energy estimate is a simple application of Fatou's Lemma. 
We note that t - + f ( t )  e B~ ~ is continuous for K < 2. As a result of  the 
bound (10) on the collision kernel, J:  Ba" • Ba~---~ B" is continuous, and 
therefore so is t -+ J ( f ( t ) )  c B ~. 

Since B~ ~ satisfies the Dunford-Pettis property, J: Ba" • Ba~--+ B" is 
weakly continuous. (11) In particular, J(fp(s)) converges weakly to J( f ( s ) )  
for each s. Since IlJp(~b) - J(r -+ 0 uniformly for ~b in the unit ball of B f ,  
we have Jp(f~(s)) wk > J( f (s ) )  pointwise in s. 

Using the integral equation for fp(t), the Dominated Convergence 
Theorem, and the established continuity of J( f ( t ) ) ,  we can see that the 
limit function f ( t )  satisfies Eq. (6). 
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Theorem 3. In  addi t ion to the hypotheses  o f  Theo rem 2, let 90 E B~" 
for  some K > 2, 2A. Then Hf(t)]]2 = [[q~o[[2 (energy conservation).  

Proof.  The p r o o f  is an appl icat ion o f  Povzner ' s  inequality~6~: 

~3dc(1 + c2)~12J(~b, ~b)(c) <<, m~{[[ [~b[ ll~+~-0ll l~bl II0 + ]11~bI [l~-0]l I~ b] [I~+0} 

where M~ is a constant  depending only on ~; 0 ~< 0 ~< 2; h is the growth  rate 
of  the collision kernel indicated in (10); and  the no rms  HI" [H~ indicate that  
the spatial variable has not  been summed.  We m a y  assume, wi thout  loss o f  
generality, tha t  h > 1. Fo r  the choice ~ = 2h, and 0 = h, Povzner ' s  inequality 
and  L e m m a  2 give 

I/f,(t)]]~ -< [[~0l]~ + Mp '  IIf,(s)II2tlL(s)[I~ ds 
, J 0  

where M(~ ~ is a constant  depending bo th  on K and the lattice spacing. By the 
Gronwal l  inequality []fp(t)]]~ is un i formly  bounded  on finite t ime intervals, 
and  thus the weak subsequence convergence f v - - + f  in B" extends to weak 
subsequence convergence f~ - -> f  in B~, for  any K' < K, in part icular  K' = 2. 
Energy conservat ion is immediate .  

We remark  that  f rom the uniformity  in p of  the bound  H ( f v )  <<. H(9o)  

and the energy bound,  Hf(t)[[2 ~< ]]90]]2, the double  limit as p - +  oo and the 
lattice spacing 2 - ~ - +  0 m a y  be t reated to obtain  a weakly convergent  
subsequence for  unbounded  collision kernels. As we noted,  what  equat ion 
such a l imiting solution might  obey is not  known.  
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